Dr. Margreet R. de Vries

Margreet R. de Vries, an assistant professor at the department of Vascular Surgery, has a long-standing interest in vascular remodeling; from angiogenesis and atherosclerosis to post-interventional remodeling in vein grafts and arteriovenous fistula using complex in vivo and in vitro models, The involvement of inflammatory factors on vascular remodeling as well as non-invasive imaging strategies including ultrasound and photoacoustics are her latest interests that she studies with Rembrandt and Health~Holland grants. She is a regular visiting professor at the Vascular and Endovascular Surgery department at Brigham’s and Women hospital studying dietary restriction in vein graft remodeling.

Most recent publications

Basic Vascular Science 2024 Meeting
Sluiter TJ, Cruddas L, Ninno F, Schmitz-Rixen T, Tsui J and de Vries MR
The Basic Vascular Science (BVS) meeting was set up to provide a forum for researchers and clinicians in the field to exchange knowledge and ideas and to foster cross-disciplinary collaborations. The BVS 2024 meeting was held in Berlin. Attended by vascular surgeons and physicians, interventional radiologists, basic science researchers, and engineers, the meeting continues to successfully attract both early career researchers and established clinician-scientists. Here, we report on the scientific sessions encompassing keynote lectures and oral presentations.
Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix
Laboyrie SL, de Vries MR, Bijkerk R and Rotmans JI
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Short-term Pre-operative Methionine Restriction Induces Browning of Perivascular Adipose Tissue and Improves Vein Graft Remodeling in Mice
Kip P, Sluiter TJ, MacArthur MR, Tao M, Jung J, Mitchell SJ, Kooijman S, Kruit N, Gorham J, Seidman JG, Quax PHA, Aikawa M, Ozaki CK, Mitchell JR and de Vries MR
Short-term preoperative methionine restriction (MetR) shows promise as a translatable strategy to modulate the body's response to surgical injury. Its application, however, to improve post-interventional vascular remodeling remains underexplored. Here, we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and adverse vascular remodeling after vein graft surgery. RNA sequencing reveals that MetR enhances the brown adipose tissue phenotype in arterial perivascular adipose tissue (PVAT) and induces it in venous PVAT. Specifically, PPAR-α was highly upregulated in PVAT-adipocytes. Furthermore, MetR dampens the post-operative pro-inflammatory response to surgery in PVAT-macrophages and . This study shows for the first time that the detrimental effects of dysfunctional PVAT on vascular remodeling can be reversed by MetR, and identifies pathways involved in browning of PVAT. Furthermore, we demonstrate the potential of short-term pre-operative MetR as a simple intervention to ameliorate vascular remodeling after vascular surgery.
Myeloid PHD2 Conditional Knockout Improves Intraplaque Angiogenesis and Vascular Remodeling in a Murine Model of Venous Bypass Grafting
Sluiter TJ, Tillie RJHA, de Jong A, de Bruijn JBG, Peters HAB, van de Leijgraaf R, Halawani R, Westmaas M, Starink LIW, Quax PHA, Sluimer JC and de Vries MR
Intraplaque angiogenesis occurs in response to atherosclerotic plaque hypoxia, which is driven mainly by highly metabolically active macrophages. Improving plaque oxygenation by increasing macrophage hypoxic signaling, thus stimulating intraplaque angiogenesis, could restore cellular function and neovessel maturation, and decrease plaque formation. Prolyl hydroxylases (PHDs) regulate cellular responses to hypoxia. We therefore aimed to elucidate the role of myeloid PHD2, the dominant PHD isoform, on intraplaque angiogenesis in a murine model for venous bypass grafting.
Imaging and Quantification of the Hepatic Vasculature of Mice Using Ultrafast Doppler Ultrasound
Stripling K, Timmermans F, Décombas-Deschamps S, Thalgott JH, Lemonnier D, de Vries MR, Rabelink TJ, Tanter M, Deffieux T and Lebrin F
Non-invasive in vivo imaging of the vasculature is a powerful tool for studying disease mechanisms in rodents. To achieve high sensitivity imaging of the microvasculature using Doppler ultrasound methods, imaging modalities employing the concept of ultrafast imaging are preferred. By increasing the frame rate of the ultrasound scanner to thousands of frames per second, it becomes possible to improve the sensitivity of the blood flow down to 2 mm/s and to obtain functional information about the microcirculation in comparison to a sensitivity of around 1 cm/s in conventional Doppler modes. While Ultrafast Doppler ultrasound (UFUS) imaging has become adopted in neuroscience, where it can capture brain activity through neurovascular coupling, it presents greater challenges when imaging the vasculature of abdominal organs due to larger motions linked to breathing. The liver, positioned anatomically under the diaphragm, is particularly susceptible to out-of-plane movement and oscillating respiratory motion. These artifacts not only adversely affect Doppler imaging but also complicate the anatomical analysis of vascular structures and the computation of vascular parameters. Here, we present a qualitative and quantitative imaging analysis of the hepatic vasculature in mice by UFUS. We identify major anatomical vascular structures and provide graphical illustrations of the hepatic macroscopical anatomy, comparing it to an in-depth anatomical assessment of the hepatic vasculature based on Doppler readouts. Additionally, we have developed a quantification protocol for robust measurements of hepatic blood volume of the microvasculature over time. To contemplate further research, qualitative vascular analysis provides a comprehensive overview and suggests a standardized terminology for researchers working with mouse models of liver disease. Furthermore, it offers the opportunity to apply ultrasound as a non-invasive complementary method to inspect hepatic vascular defects in vivo and measure functional microvascular alterations deep within the organ before unraveling blood vessel anomalies at the micron scale levels using ex vivo staining on tissue sections.