Dr. Timo Schomann

Most recent publications

Inhibition of murine colorectal cancer metastasis by targeting M2-TAM through STAT3/NF-kB/AKT signaling using macrophage 1-derived extracellular vesicles loaded with oxaliplatin, retinoic acid, and Libidibia ferrea
de Carvalho TG, Lara P, Jorquera-Cordero C, Aragão CFS, de Santana Oliveira A, Garcia VB, de Paiva Souza SV, Schomann T, Soares LAL, da Matta Guedes PM and de Araújo Júnior RF
Colorectal cancer is still unmanageable despite advances in target therapy. However, extracellular vesicles (EVs) have shown potential in nanomedicine as drug delivery systems, especially for modulating the immune cells in the tumor microenvironment (TME). In this study, M1 Macrophage EVs (M1EVs) were used as nanocarriers of oxaliplatin (M1EV1) associated with retinoic acid (M1EV2) and Libidibia ferrea (M1EV3), alone or in combination (M1EV4) to evaluate their antiproliferative and immunomodulatory potential on CT-26 and MC-38 colorectal cancer cell lines and prevent metastasis in mice of allograft and peritoneal colorectal cancer models. Tumors were evaluated by qRT-PCR and immunohistochemistry. The cell death profile and epithelial-mesenchymal transition process (EMT) were analyzed in vitro in colorectal cancer cell lines. Polarization of murine macrophages (RAW264.7 cells) was also carried out. M1EV2 and M1EV3 used alone or particularly M1EV4 downregulated the tumor progression by TME immunomodulation, leading to a decrease in primary tumor size and metastasis in the peritoneum, liver, and lungs. STAT3, NF-kB, and AKT were the major genes downregulated by of M1EV systems. Tumor-associated macrophages (TAMs) shifted from an M2 phenotype (CD163) to an M1 phenotype (CD68) reducing levels of IL-10, TGF-β and CCL22. Furthermore, malignant cells showed overexpression of FADD, APAF-1, caspase-3, and E-cadherin, and decreased expression of MDR1, survivin, vimentin, and PD-L1 after treatment with systems of M1EVs. The study shows that EVs from M1 antitumor macrophages can transport drugs and enhance their immunomodulatory and antitumor activity by modulating pathways associated with cell proliferation, migration, survival, and drug resistance.
Correction: Yu et al. Rare-Earth-Metal (Nd, Ce and Gd)-Doped CaF: Nanoparticles for Multimodal Imaging in Biomedical Applications. 2022, , 2796
Yu Z, He Y, Schomann T, Wu K, Hao Y, Suidgeest E, Zhang H, Eich C and Cruz LJ
In the original publication [...].
Dual-Targeting Nanoliposome Improves Proinflammatory Immunomodulation of the Tumor Microenvironment
Gu Z, da Silva CG, Ma S, Liu Q, Schomann T, Ossendorp F and Cruz LJ
Immunotherapies targeting immune checkpoints have revolutionized cancer treatment by normalizing the immunosuppressive microenvironment of tumors and reducing adverse effects on the immune system. Indoleamine 2,3-dioxygenase (IDO) inhibitors have garnered attention as a promising therapeutic agent for cancer. However, their application alone has shown limited clinical benefits. Cabozantinib, a multitarget tyrosine kinase inhibitor, holds immunomodulatory potential by promoting infiltration and activation of effector cells and inhibiting suppressive immune cells. Despite its potential, cabozantinib as a monotherapy has shown limited efficacy in terms of objective response rate. In this study, IDO-IN-7 and cabozantinib are coencapsulated into liposomes to enhance tumor accumulation and minimize adverse effects. The liposomal combination exhibits potent cytotoxicity and inhibits the function of IDO enzyme. Furthermore, the dual-targeted treatment effectively inhibits tumor development and reverses the suppressive tumor microenvironment by regulating both adaptive and innate branch of immune system. This is evidenced by pronounced infiltration of T cells and B cells, a decrease of regulatory T lymphocytes, a shift to a proinflammatory phenotype of tumor-associated macrophages, and increases levels of neutrophils. This is the first developed of a liposome-delivered combination of IDO inhibitors and cabozantinib, and holds great potential for future clinical application as a promising anticancer strategy.
Correction: Yu et al. Achieving Effective Multimodal Imaging with Rare-Earth Ion-Doped CaF Nanoparticles. 2022, , 840
Yu Z, He Y, Schomann T, Wu K, Hao Y, Suidgeest E, Zhang H, Eich C and Cruz LJ
There was an error in the original publication [...].
Preclinical evaluation of EpCAM-binding designed ankyrin repeat proteins (DARPins) as targeting moieties for bimodal near-infrared fluorescence and photoacoustic imaging of cancer
Houvast RD, Badr N, March T, de Muynck LDAN, Sier VQ, Schomann T, Bhairosingh S, Baart VM, Peeters JAHM, van Westen GJP, Plückthun A, Burggraaf J, Kuppen PJK, Vahrmeijer AL and Sier CFM
Fluorescence-guided surgery (FGS) can play a key role in improving radical resection rates by assisting surgeons to gain adequate visualization of malignant tissue intraoperatively. Designed ankyrin repeat proteins (DARPins) possess optimal pharmacokinetic and other properties for in vivo imaging. This study aims to evaluate the preclinical potential of epithelial cell adhesion molecule (EpCAM)-binding DARPins as targeting moieties for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of cancer.